If it's not what You are looking for type in the equation solver your own equation and let us solve it.
10n+15n^2=0
a = 15; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·15·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*15}=\frac{-20}{30} =-2/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*15}=\frac{0}{30} =0 $
| y=1000(1.03)^9 | | -7=i/10 | | 10=-p/6 | | 10w+8-2(3w-4)=12 | | A1=-2÷r=-3 | | 2x^2+3x+10=2x+32 | | -1/6f=8 | | r^2+6r-8=0 | | -r/10=-6 | | -8=-i/3 | | 250.05=y | | 1/3s=-7 | | 8=-1/7m | | y(3)=-18 | | Y=1/2x+36 | | 2x+3/2x=420 | | 2x+144-27=13+200 | | -r/7=13 | | 3x-76=x+20 | | 8n=9 10 | | 40x+5(1.5x)=875 | | (x-1)^2-36=0 | | a+1/8=9/4 | | 38n+50=850 | | 90=10(d+8) | | b+13=4b+7 | | (5-x)^2+3=0 | | 3.52/x=4 | | 2a-9=6a-29 | | 36.2=n-12 | | 36=2.5x | | -3(1+4x)-2x=3(7x+8)-8x |